In an era shaped by rapid urbanization and digital transformation, smart cities have become a global imperative for sustainable, efficient, and citizen-centric development. This article analyzes Amman’s development into a smart city, highlighting its role as a model for emerging urban areas. Leveraging recent technologies such as AI, IoT, blockchain, and big data, Amman is actively transitioning from a traditional city to a smart one enhancing mobility, energy efficiency, education, healthcare, and citizen engagement. This study examines Amman’s smart city vision and roadmap, technological infrastructure, key application domains, implemented innovation projects, and global rankings. It also explores the challenges the city faces, future research opportunities across various domains, the role of software in urban development, and the critical factors contributing to Amman’s success as a smart city. This article serves as a vital reference for researchers, policymakers, urban planners, and practitioners aiming to shape next-generation smart cities. The case of Amman underscores how strategic governance, public-private collaboration, and the effective use of emerging technologies can accelerate sustainable urban transformation.
Smart cities represent a nexus where urban planning, engineering, digital technologies, and societal needs converge. In emerging economies such as Iraq, conventional top-down smart city models often fail to account for contextual realities, resulting in fragmented or unsustainable initiatives. This paper proposes a novel interdisciplinary smart city development framework that integrates Artificial Intelligence (AI)-based planning, engineering simulations, urban design heuristics, and insights from social sciences particularly those related to digital inclusion and governance. Leveraging publicly available datasets and simulation environments, we demonstrate that the proposed approach can reduce urban traffic congestion by up to 35%, improve equitable access to public services by over 30%, forecast energy demands with more than 85% accuracy, and detect cyber threats with a precision and recall of 85.7%. These results validate the feasibility of a modular, adaptable smart city blueprint that embeds cybersecurity and data governance principles from the outset offering a scalable alternative suited to the institutional and infrastructural realities of developing contexts like Iraq.
The rapid expansion of smart home and smart city technologies has introduced a complex array of interconnected Internet of Things (IoT) devices, exposing both cyber and physical infrastructures to a growing spectrum of security threats. Traditional cybersecurity models are insufficient to address the dynamic and distributed nature of modern cyber-physical environments, particularly in emerging economies where standardized security frameworks are often lacking. This research proposes a unified, hybrid cyber-physical security framework tailored for smart home and smart city IoT systems. Leveraging publicly available datasets such as UNSW-NB15, TON_IoT, and CICIDS2019, we simulate various attack vectors and evaluate a multi-layered intrusion detection system (IDS) that combines both signature-based and anomaly-based machine learning models. The proposed framework is validated using simulated network topologies built with NS-3 and Cooja, focusing on performance metrics including detection accuracy, false-positive rate, and computational overhead. Results demonstrate that our hybrid approach achieves over 95% accuracy in detecting complex multi-stage attacks, while maintaining scalability and adaptability across different IoT environments. The findings contribute to the development of more secure, resilient, and context-aware smart infrastructure systems offering a practical foundation for real-world deployment in smart cities and connected home ecosystems, especially within developing regions such as Iraq.
Smart city applications demand lightweight, efficient and dependable communication protocols to facilitate the functioning of resource-limited Internet of Things (IoT) devices. This work performs an extensive empirical study of the three most prominent IoT standards; Message Queuing Telemetry Transport (MQTT), the Constrained Application Protocol (CoAP) and Hypertext Transfer Protocol (HTTP) by emulating real-world smart city use cases using a Raspberry Pi based testbed. The primary metrics based on which the protocols are analyzed are latency, message overhead, delivery rate and energy consumption. ANOVA and Tukey's HSD tests are used to determine the statistical significance of experimental data. The test results indicate that CoAP under (QoS-1 reliability) shows the least latency and energy consumption and MQTT due to its support for Quality of Service (QoS) is the most reliable. Among the others, HTTP is in general performance terms certainly at the bottom of all metrics mainly for its verbosity and synchronous nature. The paper then also suggests a decision flowchart for developers to choose the suitable protocol according to application requirements. The results are more than just numbers on a graph, and the research can be deployed for advice for protocol selection in practice, where this study helps identify issues with encryption overhead (over 75\%) while showcasing multi-hop network scalability and adaptive switch mechanisms as areas that remain to be resolved. Such findings can be used as a basis for design approaches to construct secure, efficient and scalable communication protocols in urban IoT settings.