Abstract
Smart cities represent a nexus where urban planning, engineering, digital technologies, and societal needs converge. In emerging economies such as Iraq, conventional top-down smart city models often fail to account for contextual realities, resulting in fragmented or unsustainable initiatives. This paper proposes a novel interdisciplinary smart city development framework that integrates Artificial Intelligence (AI)-based planning, engineering simulations, urban design heuristics, and insights from social sciences particularly those related to digital inclusion and governance. Leveraging publicly available datasets and simulation environments, we demonstrate that the proposed approach can reduce urban traffic congestion by up to 35%, improve equitable access to public services by over 30%, forecast energy demands with more than 85% accuracy, and detect cyber threats with a precision and recall of 85.7%. These results validate the feasibility of a modular, adaptable smart city blueprint that embeds cybersecurity and data governance principles from the outset offering a scalable alternative suited to the institutional and infrastructural realities of developing contexts like Iraq.