This research introduces a deep learning-based framework for anomaly detection in wireless communication networks using Channel State Information (CSI)—a fine-grained physical-layer signal that captures wireless channel dynamics. Traditional detection methods often fall short in identifying subtle or evolving threats, whereas CSI provides a rich, underutilized source for context-aware monitoring. Inspired by its use in human activity recognition, we apply and compare deep learning architectures such as Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTMs), and Transformers to learn normal network behavior and detect anomalies, including spoofing, jamming, rogue access points, environmental disruptions, and Quality of Service (QoS) degradation. The system supports supervised, semi-supervised, and unsupervised settings, accommodating scenarios with limited labeled data. CSI data is collected using tools like the Intel 5300 NIC and Nexmon CSI under both controlled and realistic conditions. We benchmark our models against traditional techniques (e.g., Isolation Forests, Support Vector Machines (SVMs), Principal Component Analysis (PCA)), evaluating accuracy, false positives, latency, and robustness. To enhance transparency, we employ interpretability methods such as Gradient-weighted Class Activation Mapping (Grad-CAM) and t-distributed Stochastic Neighbor Embedding (t-SNE). Experimental results show that deep learning models outperform classical baselines by up to 30% in detection accuracy. The Transformer architecture achieved 96.2% accuracy with a false positive rate of 3.9%, while the CNN-LSTM hybrid achieved the best latency–performance tradeoff (5.1ms inference). Compared to Isolation Forest and One-Class SVM, our framework reduced false positives by over 10–14%.