International Journal of Mechatronics, Robotics, and Artificial Intelligence
Login
IJMRAI
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for explainable-ai-xai-

Article
A Hybrid Intrusion Detection Framework for CyberPhysical Security in Smart Home/Smart City IoT Systems

Mustafa Aljumaily , Sherwan Abdullah, Ahmed Abd Alhasan

Pages: 63-73

PDF Full Text
Abstract

The rapid expansion of smart home and smart city technologies has introduced a complex array of interconnected Internet of Things (IoT) devices, exposing both cyber and physical infrastructures to a growing spectrum of security threats. Traditional cybersecurity models are insufficient to address the dynamic and distributed nature of modern cyber-physical environments, particularly in emerging economies where standardized security frameworks are often lacking. This research proposes a unified, hybrid cyber-physical security framework tailored for smart home and smart city IoT systems. Leveraging publicly available datasets such as UNSW-NB15, TON_IoT, and CICIDS2019, we simulate various attack vectors and evaluate a multi-layered intrusion detection system (IDS) that combines both signature-based and anomaly-based machine learning models. The proposed framework is validated using simulated network topologies built with NS-3 and Cooja, focusing on performance metrics including detection accuracy, false-positive rate, and computational overhead. Results demonstrate that our hybrid approach achieves over 95% accuracy in detecting complex multi-stage attacks, while maintaining scalability and adaptability across different IoT environments. The findings contribute to the development of more secure, resilient, and context-aware smart infrastructure systems offering a practical foundation for real-world deployment in smart cities and connected home ecosystems, especially within developing regions such as Iraq.

1 - 1 of 1 items

Search Parameters

Journal Logo
International Journal of Mechatronics, Robotics, and Artificial Intelligence

College of Engineering | University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering | University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.