Cover
Vol. 1 No. 2 (2025)

Published: December 1, 2025

Pages: 131-142

Review Article

Advancements in Automated Cheating Detection Systems for Online and In-Person Examinations: A Comprehensive Review of Methods, Technologies, and Effectiveness

Abstract

Authenticity of tests as a measurement tool has received a lot of attention within learning institutions due to emergences of online classes and remote test administration. Supervision and invigilation methods do not always suffice to deter students from cheating, and thus Academic Cheating Detection Systems (ACDETS) have been invented. This paper presents a critical analysis of the current approaches for identifying cheating in online and face-to-face examination systems. There are plenty of approaches, including behavioral approach, facial expressions tracking, gestures recognition, voice analysis, and video monitoring. CNN (Convolutional Neural Network) algorithms, RNN (Recurrent Neural Network) algorithms, and YOLO models, for instance, have shown great enhancements in both accuracy and scalability of detecting suspicious behaviors. The paper further compares the merits and demerits of these methods and also looks at the possibility of using them for real time detection, large setting for exams, and varied testing conditions. This paper is finalized by the evaluation of the practical applicability of the findings, limitations, and further research prospects concerning the monitoring of academic integrity.

References

  1. W. Alsabhan, “Student Cheating Detection in Higher Education by Implementing Machine Learning and LSTM Techniques,” Sensors, vol. 23, no. 8, 2023, doi: 10.3390/s23084149
  2. K. Lee and M. Fanguy, “Online exam proctoring technologies: Educational innovation or deterioration?,” Br. J. Educ. Technol., vol. 53, no. 3, pp. 475–490, 2022, doi: 10.1111/bjet.13182
  3. K. J. Brakas, and M. Alanezi “Measuring the Extent of Cyberbullying Comments in Facebook Groups for Mosul University Students,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 2, pp. 337–348, 2025, https://orcid.org/0000-0003-4213-9193
  4. D. Starovoytova and S. Namango, “Factors Affecting Cheating-Behavior at,” J. Educ. Pract., vol. 7, no. 31, pp. 66–82, 2016
  5. I. Jegham, A. Ben Khalifa, I. Alouani, and M. Mahjoub, “Vision-based human action recognition: An overview and real world challenges,” Digit. Investig., vol. 32, p. 200901, Mar. 2020, doi: 10.1016/j.fsidi.2019.200901
  6. M. Kulbacki, M. Kulbacki, J. Segen , Z. Chaczko, J. W. Rozenblit, M. Kulbacki , R. Klempous, and K. Wojciechowski., “Intelligent Video Analytics for Human Action Recognition: The State of Knowledge,” Sensors, vol. 23, no. 9, pp. 1–31, 2023, doi: 10.3390/s23094258
  7. F. Hussein, A. Al-Ahmad, S. El-Salhi, E. Alshdaifat, and M. Al-Hami, “Advances in Contextual Action Recognition: Automatic Cheating Detection Using Machine Learning Techniques,” Data, vol. 7, no. 9, 2022. https://doi.org/10.3390/data7090122
  8. M. El-Masry, M. Fakhr, and M. A.-M. M. Salem, “Action Recognition by Discriminative EdgeBoxes,” IET Comput. Vis., vol. 12, issue 4, pp. 443-452, Dec. 2017, doi: 10.1049/iet-cvi.2017.0335
  9. H. M. Mohammed and Q. I. Ali, “Cheating Prevention in E-proctoring Systems Using Secure Exam Browsers: A Case Study,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 8, no. 4, p. 634, 2022, doi: 10.26555/jiteki.v8i4.25094
  10. N. Doghonadze, T. Dolidze, N. Vasadze, M. Zoranyan, “Cheating in Higher Education - Causes , Results and Ways to Prevent,” June, 2024.
  11. D. Starovoytova and M. Arimi, “Witnessing of Cheating-in-Exams Behavior and Factors Sustaining Integrity,” Journal of Education and Practice., vol. 8, no. 10, pp. 127–141, 2017.
  12. R. J. Fendler, M. C. Yates, and J. M. Godbey, “Proof that a simple positive approach can reduce student cheating,” J. Instr. Pedagog., vol. 28, pp. 1–19, 2023, http://www.aabri.com/copyright.html
  13. T. Lancaster, “Effective And Efficient Plagiarism Detection,” no. January 2003, 2003.
  14. S. Hamady, K. Mershad, and B. Jabakhanji, “Multi-version interactive assessment through the integration of GeoGebra with Moodle,” Front. Educ., vol. 9, pp. 1–15, 2024, doi: 10.3389/feduc.2024.1466128
  15. R. Fendler and J. Godbey, “Cheaters Should Never Win: Eliminating the Benefits of Cheating,” J. Acad. Ethics, vol. 14, Sep. 2015, doi: 10.1007/s10805-015-9240-8
  16. R. A. Hicklin, L. Eisenhart, N. Richetelli, B. Eckenrode, “Accuracy and reliability of forensic handwriting comparisons,” Proc. Natl. Acad. Sci. U. S. A., vol. 119, no. 32, pp. 1–12, 2022, doi: 10.1073/pnas.2119944119
  17. C. Y. Chuang, S. D. Craig, and J. Femiani, “Detecting probable cheating during online assessments based on time delay and head pose,” High. Educ. Res. Dev., vol. 36, issue 6, pp. 1123–1137, 2017, doi: 10.1080/07294360.2017.1303456
  18. W. T. Smale, R. Hutcheson, and C. J. Russo, “Cell Phones, Student Rights, and School Safety: Finding the Right Balance,” Can. J. Educ. Adm. Policy, no. 195, pp. 49–64, 2021, doi: 10.7202/1075672AR
  19. O. Zimba and A. Y. Gasparyan, “Plagiarism detection and prevention: A primer for researchers,” Reumatologia, vol. 59, no. 3, pp. 132–137, 2021, doi: 10.5114/reum.2021.105974
  20. M. Kim, “peer-reporting of academic dishonesty in classroom and online examinations : prevalence , experiences , perceptions , and beliefs of pharmacy students by”, University of the Pacific, 2020.
  21. R. Ladyshewsky, “Post-graduate student performance in ‘supervised in-class’ vs. ‘unsupervised online’ multiple choice tests: implications for cheating and test security,” Assess. Eval. High. Educ., vol. 40, issue 7, pp. 1–15, May 2014, doi: 10.1080/02602938.2014.956683
  22. V. Raman and S. Ramlogan, “Academic integrity and the implementation of the honour code in the clinical training of undergraduate dental students,” Int. J. Educ. Integr., vol. 16, no. 1, pp. 1–20, 2020, doi: 10.1007/s40979-020-00058-2
  23. O. L. Holden, M. E. Norris, and V. A. Kuhlmeier, “Academic Integrity in Online Assessment: A Research Review,” Front. Educ., vol. 6, pp. 1–13, 2021, doi: 10.3389/feduc.2021.639814
  24. N. Taşkin, “Cheating and prevention strategies in online assessment,” Teach. Assess. Era Educ. 5.0, no. June, pp. 161–172, 2024, doi: 10.4018/979-8-3693-3045-6.ch009
  25. N. Das and M. Panjabi, “Plagiarism: Why is it such a big issue for medical writers?,” Perspect. Clin. Res., vol. 2, no. 2, p. 67, 2023, doi: 10.4103/2229-3485.80370
  26. M. Rodrigues, R. Silva, A. P. Borges, M. Franco, and C. Oliveira, “Artificial intelligence: threat or asset to academic integrity? A bibliometric analysis,” Kybernetes, vol. 54, issue 5, pp. 2939-2970, 2024, doi: 10.1108/K-09-2023-1666
  27. A. Tweissi, W. Al Etaiwi, and D. Al Eisawi, “The Accuracy of AI-Based Automatic Proctoring in Online Exams,” Electron. J. e-Learning, vol. 20, no. 4, pp. 419–435, 2022, doi: 10.34190/ejel.20.4.2600.
  28. O. Kruse, C. Rapp, C. M. Anson, K. Benetos, E. Cotos, A. Devitt, and A. Shibani, Digital writing technologies in higher education: Theory, research, and practice. Springer International Publishing, 2023. doi: 10.1007/978-3-031-36033-6
  29. G. Frankl, P. Schartner, and G. Zebedin, “Secure online exams using students’ devices,”, Proceedings of the 2012 IEEE Global Engineering Education Conference, pp. 1–7, Apr. 2012, doi: 10.1109/EDUCON.2012.6201111
  30. O. Ojajuni, F. Ayeni, O. Akodu, F Ekanoye, S. Adewole, T. Ayo, S. Misra, and V. Mbarika, "Predicting Student Academic Performance Using Machine Learning", LNCS , vol. 12957, pp. 481-491, 2021, doi: 10.1007/978-3-030-87013-3_36
  31. J. H. Yi and J. Moon, “Secure and Transparent Craftwork Authentication and Transaction System: Integrating Digital Fingerprinting and Blockchain Technologies,” Appl. Sci., vol. 14, no. 19, 2024, doi: 10.3390/app14199054
  32. K. Amkamaran, I. F. Kasmin, Z. M. Zainal Abidin, and H. Vasudavan, “Secured E-Examination System with Continuous Authentication to Prevent Cheating,” Int. J. Data Sci. Adv. Anal., vol. 4,no. 2, pp. 242–249, 2023, doi: 10.69511/ijdsaa.v4i0.172
  33. R. Djokovic, J. Janinovic, S. Pekovic, D. Vuckovic, and M. Blecic, “Relying on Technology for Countering Academic Dishonesty: The Impact of Online Tutorial on Students’ Perception of Academic Misconduct,” Sustain., vol. 14, no. 3, 2022, doi: 10.3390/su14031756
  34. R. Bawarith, D. Abdullah, D. Anas, and P. Dr., “E-exam Cheating Detection System,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 4, pp. 176–181, 2017, doi: 10.14569/ijacsa.2017.080425
  35. M. Takahashi, M. Naemura, M. Fujii, and S. Satoh, “Human action recognition in crowded surveillance video sequences by using features taken from key-point trajectories,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pp. 9–16, 2011, doi: 10.1109/CVPRW.2011.5981713
  36. G. Ranganathan, “A Study to Find Facts Behind Preprocessing on Deep Learning Algorithms,” J. Innov. Image Process., vol. 3, pp. 66–74, Apr. 2021, doi: 10.36548/jiip.2021.1.006
  37. A. B. Sargano, P. Angelov, and Z. Habib, “A comprehensive review on handcrafted and learning-based action representation approaches for human activity recognition,” Appl. Sci., vol. 7, no. 1, 2017, doi: 10.3390/app7010110
  38. K. Alomar, H. I. Aysel, and X. Cai, “RNNs, CNNs and Transformers in Human Action Recognition: A Survey and A Hybrid Model,” arXiv:2407.06162v1, pp. 1–46, 2024, http://arxiv.org/abs/2407.06162
  39. B. Sharief and Y. Ersayyem, “LLM and RAG Powered Chatbot for the College of Computer Science and Mathematics at the University of Mosul,” Int. Res. J. Innov. Eng. Technol., vol. 08, pp. 59–61, Jan. 2024, doi: 10.47001/IRJIET/2024.810010
  40. K. M. Al-Tkhayneh, E. M. Alghazo, and D. Tahat, “The Advantages and Disadvantages of Using Artificial Intelligence in Education,” J. Educ. Soc. Res., vol. 13, no. 4, pp. 105–117, 2023, doi: 10.36941/jesr-2023-0094
  41. A. Nigam, R. Pasricha, T. Singh, and P. Churi, “A Systematic Review on AI-based Proctoring Systems: Past, Present and Future,” Educ. Inf. Technol., vol. 26, no. 5, pp. 6421–6445, 2021, doi: 10.1007/s10639-021-10597-x
  42. F. Noorbehbahani, A. Mohammadi, and M.Aminazadeh, "A systematic review of research on cheating in online exams from 2010 to 2021", Education and Information Technologies, vol. 27, no. 6, 2022. doi: 10.1007/s10639-022-10927-7
  43. S. Mishra, S. Roopikha, S. Roshini, and S. Rithika, “Automatic Cheating Detection In Exam Hall,” techrxiv.orgR, 2023, https://www.techrxiv.org/doi/full/10.36227/techrxiv.24538150.v1
  44. M. B. Ibrahim, A. U. Othman, B. F. Balogun, U. Musa, U. Chinalu, and U. C. Briget, “Development of a fingerprint biometric authentication scheme in electronic examination,” Int. Res. J. Adv. Eng. Sci. Briget, vol. 2, no. 1, pp. 177–185, 2017.
  45. Z. Zeng, E. Neuer, M. Roetting, and F. Siebert, “A One-Point Calibration Design for Hybrid Eye Typing Interface,” Int. J. Hum. Comput. Interact., vol. 39, pp. 1–14, Jul. 2022, doi: 10.1080/10447318.2022.2101186
  46. C. Y. Chuang, S. D. Craig, and J. Femian "Detecting probable cheating during online assessments based on time delay and head pose", Higher Education Research and Development, 36 , 1123-1137, 2017, doi: 10.1080/07294360.2017.1303456
  47. H. Fakhrurroja, C. Machbub, A. S. Prihatmanto, and A. Purwarianti, “Multimodal interaction system for home appliances control,” Int. J. Interact. Mob. Technol., vol. 14, no. 15, pp. 44–67, 2020, doi: 10.3991/IJIM.V14I15.13563
  48. J. Nishchal, S. Reddy, and P. N. Navya, “Automated Cheating Detection in Exams using Posture and Emotion Analysis,” Proc. CONECCT 2020 - 6th IEEE Int. Conf. Electron. Comput. Commun. Technol., 2020, doi: 10.1109/CONECCT50063.2020.9198691
  49. F. Kamalov, H. Sulieman, and D. S. Calonge, “Machine learning based approach to exam cheating detection,” PLoS ONE, vol. 16, no. 8 August. 2021. doi: 10.1371/journal.pone.0254340
  50. M. Malhotra and I. Chhabra, “Automatic Invigilation Using Computer Vision,” Proceedings of the 3rd International Conference on Integrated Intelligent Computing Communication & Security (ICIIC 2021), vol. 4. 2021. doi: 10.2991/ahis.k.210913.017
  51. A. Can, M. Uluya˘gmur, and U. Bayraktar, “Cheating Detection Pipeline for Online Interviews and Exams,” in arXiv:2106.14483v1, 2021.
  52. M. D. Genemo, “Suspicious activity recognition for monitoring cheating in exams,” Proceedings of the Indian National Science Academy , vol. 88, pp. 1-10, 2022, https://doi.org/10.1007/s43538-022-00069-2
  53. S. Kaddoura and A. Gumaei, “Towards effective and efficient online exam systems using deep learning-based cheating detection approach,” Intelligent Systems with Applications, vol. 16, 2022, https://doi.org/10.1016/j.iswa.2022.200153
  54. F. Mahmood, J. Arhad, M. T. Othman, M. F. Hayat, N. Bhatti, M.H. Jaffary, A. Rehman, and H. Hamam, “Implementation of an Intelligent Exam Supervision System Using Deep Learning Algorithms,” Sensors, vol. 22, no. 17, 2022, doi: 10.3390/s22176389
  55. R. M. Al_Airaji, I. A. Aljazaery, H. T. S. ALRikabi, and A. H. M. Alaidi, “Automated Cheating Detection based on Video Surveillance in the Examination Classes,” Int. J. Interact. Mob. Technol., vol. 16, no. 8, pp. 124–137, 2022, doi: 10.3991/ijim.v16i08.30157
  56. S. Essahraui, M. A. El Mrabet, M. F. Bouami, K. El Makkaoui, and A. Faize, “An Intelligent Anti-cheating Model in Education Exams,” in 2022 5th International Conference on Advanced Communication Technologies and Networking (CommNet), 2022, pp. 1–6. doi: 10.1109/CommNet56067.2022.9993953
  57. R. S, RoshiniS, and S. Rithika, “Automatic Cheating Detection In Exam Hall,” International Journal of Noval Research and Development, vol.8, issue 11, 2023.
  58. N. Sumaiya, S. Navya, R. Anjali, N. Priya, A. Nandan, “Automated Invigilation System for Detection of Suspicious Activities during Examination,” Int. Res. J. Eng. Technol., vol. 10, issue 4, pp. 361–366, 2023, doi: 10.1109/AICAI.2019.8701263
  59. M. Navale, A. A. Jadhav, M. S. Kadam, S. D. Karandikar, and S. A. Kate, “From Manual to Automated: A Computer Vision-Based Solution for Exam Cheating Detection,” International Journal of Ingenious Research, Invention and Development, vol. 3, issue 5, 2024.
  60. N. Abdul Hassan, A. A. Abed, T. Y. Abdalla, "Face mask detection using deep learning on NVIDIA Jetson Nano", International Journal of Electrical and Computer Engineering, vol.12, no.5, pp. 5427-5434, 2022, doi: 10.11591/ijece.v12i5.pp5427-5434.
  61. N. Abdul Hassan, A. A. Abed, T. Y. Abdalla, "Surveillance system of mask detection with infrared temperature sensor on Jetson Nano kit", Bulletin of Electrical Engineering and Informatics, vol.11, no.2, pp. 1047-1055, 2022, doi: https://doi.org/10.11591/eei.v11i2.3369.